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Abstract

An ab initio theoretical method is derived for calculating the maximal Lya-
punov exponent of an N-body system obeying Hamilton’s equations. The theory
is developed in detail for a dilute gas. It shows the Lyapunov exponent to be
a function of the time integral of the correlation function for fluctuations in the
second derivative of the inter-particle potential (approximately a power % law).
We apply the theory to a one component plasma and derive the dependence of

the Lyapunov exponent on plasma parameter.
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1 Introduction

1.1 Motivation

The Gibbs ensemble in statistical mechanics serves as a microscopic formulation
of equilibrium thermodynamics; and the fluctuation-dissipation theorem provides
a microscopic connection to the system response functions and transport coef-
ficients which characterize small departures from equilibrium. Far from equi-
librium, Lyapunov expansion is a property with potential to provide a useful
microscopic description, when local definitions of quasi-equilibrium quantities,
such as temperature and pressure, may no longer have meaning. To be useful,
we must establish two things: a viable definition of Lyapunov expansion, local

I and a rigorous connection between Lyapunov expansion and

in phase spacel
macroscopic properties of a system out of equilibrium. This paper makes the
latter connection, in the near-equilibrium regime.

Intuitively, the connection is plausible. The Lyapunov exponent measures the
rate at which a system ‘forgets’ its initial conditions. The transport coefficients
are those response functions of the system that also measure a ‘forgetting’. For
example, scattering erases a particle’s memory of its original velocity and so gives
rise to a finite self-diffusion coefficient!?.

The work reported here creates an ab initio N-body microscopic theory of

the microscopic Lyapunov exponent. The method is quite general and in future

work we shall apply it to anharmonic crystals. Here we develop the theory for a



dilute gas or unmagnetized plasma. It gives an explicit functional relationship to
a correlation function (a one third power law), in the limit of thermal equilibrium.
Thus the Lyapunov exponent is related to system fluctuations. By way of detailed
example, we applied the theory to a one component plasma. We have compared
the theoretical predictions with a numerical simulation of the plasma, performed
by Nishihara et al.2™¥ using SCOPE, a particle-particle particle-mesh program,

adapted to compute the Lyapunov exponent.

1.2 Background

A classical system of N particles in 3 dimensions has 3N momenta and 3NV
position coordinates. We shall write them as the 3/N-dimensional vectors p and
q respectively. We may represent these by a phase point, ¥ = <Z>, in 6/NV-
dimension phase space. For simplicity, we shall assume the particles have unit
mass and a hamiltonian of the form, H = %p -p+ V(q). Hamilton’s equations

of motion for the system are

where the notation \{] means the 3N-gradient in the coordinates, 0V /dq.
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Figure 1: Displaced trajectory diverging from the reference trajectory



The detailed evolution of a system of interacting particles is, typically, very
sensitive to changes in initial conditions. The Lyapunov exponent quantifies
this sensitivity as follows. Consider a reference trajectory whose phase space
point at time ¢ is X(¢). At time ¢t = 0 let another, identical system be started
which is displaced infinitesimally from the reference trajectory by A(0). This
displaced trajectory will evolve in time to X (¢)+ A(?), (see Figure 1). Since A(t)
is infinitesimal, its equation of motion is given by the derivative of Hamilton’s
equation:

_0G(Y(1)

A(t) CA) =T(Y(R)) - A1), (2)

In sensitive systems, the displaced trajectory diverges from the reference system

exponentially, on average. The mean exponential divergence rate is defined by!®!

AT(0), A0) = lim i

At
: (3)
Adio T 140

There is a 6 N-dimensional basis, {€,}, of the A(0), such that for any given 7°(0),

A takes on one of the 6N (possibly non distinct) values

Ai(A(0)) = A,(A(0).¢)) (4)

These are the Lyapunov characteristic exponents. They can be ordered by size:

A2, > > Ay (5)

Except for a set of measure zero, an arbitrary A(0) will always have a component
in the e, direction. If A; > 0 then, in the limit £ — oo, the largest exponent will

dominate and adjacent trajectories will diverge exponentially at rate A;. This is



characteristic of sensitive dependence on initial conditions. In what follows we
shall be dealing with the maximal Lyapunov exponent only and we shall drop
the subscript; A will refer to any particular initial displacement direction (almost
all) which expresses the maximal Lyapunov exponent, A.

Other authors have sought analytic expressions for Lyapunov exponents of
many body systems. Evansl® has derived a short time formula to describe the
mean separation of close adjacent trajectories. The formula is based on a cor-
relation in time, but lacks the time translation symmetry even in equilibrium.
Chaudhuri et al.l”) found a formula for a driven nonlinear oscillator (a system
with one degree of freedom). It relates the Lyapunov exponent to a correlation
in the second derivative of the potential. They reduce their equivalent of equa-
tion (2) to a simple harmonic oscillator with a stochastic frequency and apply
the standard results of Van Kampen!®),

Many authors have been exploring the connection between transport coeffi-
cients and Lyapunov exponents. Some examples are: Gaspard and Nicolis® who
find a connection between the diffusion coefficient of a Lorentz gas and its positive
Lyapunov exponents and the Kolmogorov entropy; Evans, Cohen and Morriss!'?]
found a conjugate pairing rule between maximum and minimum Lyapunov expo-
nents and transport in non-equilibrium thermostatted molecular dynamics sim-
ulations, and illustrated it with a viscosity computation for particles interacting
via an upshifted Lennard-Jones potential; entropy production as minus the sum

[11] and discussed by

of the Lyapunov exponents was noted by Hoover and Posch
Evans and Morriss in their treatise'?); and Chernov et al.['3] proved the sum rule

for Ohm’s law entropy production in a Lorentz gas.



Section 2 of this paper presents an ab initio theory for the Lyapunov exponent
of a many body system obeying Hamilton’s equations.. In Section 3, an explicit
form for a dilute gas or plasma, in the equilibrium limit, makes a connection
with correlation functions and hence transport coefficients (via the fluctuation-
dissipation theorem[14]). The dilute gas exhibits a one-third power rule. Section 4

applies the theory, in detail, to a one component plasma.
2 Calculating the Lyapunov exponent ab initio

2.1 Exact method

We shall develop an equation of motion for the square infinitesimal distance,
|A(%)]?, between two adjacent trajectories in phase space. In order that the
problem should remain linear we actually work with the outer product of A(t)
with itself, [A®A](t). Taking an ensemble average of the equation of motion gives
a new equation for the evolution of ( A®A)(¢). Asymptotically, ( A@A)(t), will
expand at twice the Lyapunov rate. The steps of our solution are:

1. Form the outer product of the displacement, ARA (a 6N@6N component

entity).
2. Solve the equation of motion,

Clacaln = T(1) - [aca)0). (6)

where T = T®1 + 1®7 is the fourth rank, outer product version of the
stability matrix appearing in equation (2). T(¢) is shorthand for T(Y(¢)),

the t dependence being through the reference trajectory Y(¢). The solution



of equation (6) is, formally, a time-ordered exponential,
t
[A®A](t) = expp </ dr T(T)> - [A®A](0), (7)
0

3. Average equation (7) over an ensemble of reference trajectories and then
differentiate to form a new differential equation for ( A@A) (1),

d

5 (A0A4) (1) =L(t) - (A0A4)(1). (8)

4. Evaluate L(co) = tlim L(t), since for large times L(¢) should approach a
o0

constant value (i.e. forget the initial conditions).

5. Find the eigenvalue, v, of L.(cc) with the largest real part. Since |A(#)* =
Tr([A®A](t)), the Lyapunov exponent is,
A= %max Re(v). (9)

The rules for operating with outer product operators are [ARB] - [C@D] =

[A-C]@[B - D], and dot products (-) distribute over terms in a sum (+).

2.2 Perturbation theory

1581] 4 evaluate L(cc) to

We shall apply a standard perturbation techniquel
second order (equation (10), below). In the dilute gas example (see Section 3,
below), the zeroth and first order terms yield imaginary eigenvalues only (corre-

sponding to oscillations). The second order term (which involves correlations) is

essential to reveal Lyapunov expansion behavior.



Let T(t) = T, + T,(t), where T, is time-independent, and T,(¢) varies in time
through a reference trajectory drawn from an ensemble. Evaluating equation (8)

formally to second order in T, gives an asymptotic evolution equation,['5:1]

GA0a)0 = |ty (T,0)+

/oood7<<T1(t)'€TT°'T1(t—T)'G_TT°>> (Aa) (). (10)

where ( AB) = ([A— (A)][B — (B)]), is the correlation of A and B. The three
terms in the square brackets are respectively the zeroth, first and second order
terms in the perturbation expansion of L(cc). We consider T(¢) to be small
when the Kubo number, ar,, is small, where a is the R.M.S. magnitude of T(%),
and 7, is the characteristic autocorrelation decay time scale.

The form of L(oco) in equation (10) allows us, already, to state the general
rule that the Lyapunov exponent is a function of time integrals of correlation
functions of the dynamical variables. The next section develops the theory in

detail for the case of a dilute gas.

3 Application to a dilute gas or unmagnetized

plasma

3.1 Perturbation from free particles

We consider a dilute gas or unmagnetized plasma with a hamiltonian of the form
H = %p -p + V(q), where we have taken the particles to have unit mass. We
partition the stability matrix, 7, of equation (2) into a constant part, J,, due to

free particle ballistic motion, and a time dependent perturbation, J,(¢), due to



particle interactions, where

70:<(1) 8> and. 7@:(8 _‘@q(()q(t))>.

The corresponding outer product operators are

T, = T,@1 4+ 127, and,  T,(t) = T, (1)@1 + 1@T,(t).

The first order term in equation (10) is simply,
<T1(t)> - 1®<T1(t)> + <‘I1(t) >®1'
We evaluate the exponential factor of the second order term by,

eTTO — eTT()@eT‘TO‘

For ballistic motion, using equation (11), we have,

7T __ ]_ 0
(1),

(12)

(13)

(15)

In order to understand better the explicit form of the integrand in the second

order term of equation (10), it is helpful to ‘flatten’ the 6 N@6N phase space

outer product into a four-component column of 3N® 3N outer products showing

the momenta and positions explicitly:

A A
A A
A RA
A RA

ARA =

R 8
L B



In this representation the integrand in equation (10) becomes

(Ty(t)- e Tyt —7)-e770) =

=2 Vo VetV V) ) Vo Vi—Vo V] ) (Ve V=V V) (Vo +Y, V)
—rE) () (e ) (17)
8 DA -2 V0%, ) (Vo V] 4+vo %) |’

where V_ = 1®\{]q(q(t — 7)), and its transpose is,VI = \{]q(q(t —7))@1. The
elements of the matrix in equation (17) have the structure of 1, 7, or 72, times a

correlation function. The correlation functions are of two types,

(Vo- V) =10(1,(q(1)) - Voqla(t — 7)), (18)

where the correlation itself has rank 2, and, rank 4 terms of the form,

(Vo V) = (Vgqla(t)@V (gt —7))). (19)

It is important to note that g(¢ — 7) is just an earlier point of the trajectory
specified by g(t). The trace back in time must be done before averaging over the

ensemble of the {p(?),q(¢)} which define the reference trajectories.

3.2 Equilibrium ensemble averaging

The next step is to average over an ensemble of reference trajectories—equilibrium
here—in order to show the relation to other statistical quantities. We shall use the
following conventions: unsubscripted p and q will represent the 3 N-dimensional
vectors of momenta and positions of all the particles. When we use subscripts,
these will label the coordinates of a particular particle. For example: p, is the

3-momentum vector for particle ¢.
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A dilute monatomic gas in equilibrium is, on average, both isotropic and
time translation invariant. The time translation invariance allows us to replace
t by 0 in equations (13) and (17). The rotational isotropy applies to the 3 x 3
submatrices (labeled by pairs of particles, ¢ and j) and 3 x 3 @ 3 x 3 fourth rank
tensors of the form, <‘{1iqj(0)®‘{1qu(_7) > We shall assume that V(q) can be
expressed as a function of the N(N —1)/2 pair differences in particle coordinates,
(g, — qj). With this condition \{]iq] is a symmetric matrix even when 1 # j.

7

In equation (13) the rotational isotropy simplifies each submatrix to

<\{hqj(0)> - % <Tr (\{]iqj(())) > 1=l (20)

Rotational averaging the fourth rank subtensor (see Appendix A) of equation (19)

gives

(Vo - Vo Dijk = €T+ by (7)J, (22)

where the 3 x 3 x 3 x 3 tensors are, J 5.5 = 5a7 5ﬁ5 + 4,5 5ﬁ7, and [ = 1®1, and

the coefficients, labeled by particles and 7 are,
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and,

i) = g5 = (7 (1, @OD) 7r (g g al=) )+
;

3.3 Pairwise additive potential

To make further progress with the second order term we shall assume that the
potential energy is particle pairwise additive and the pair interaction has fi-
nite range. Examples of such forces are Lennard-Jones and screened Coulomb.
The finite range allows us to neglect contributions to the correlation averages
from neighbors outside a small interaction volume, s. Since we are dealing with
structureless particles, the potential energy between pair, a and b, has the form

#(lg, — q,|). The total potential energy is then

N N

1
V=23 lla, — ). (25)
a=1b=1
and,
N 82 82
Yo, = %5 2 5910 = @) = (1= 8)556(1a; - q,0) (26)

bt
Under the dilute gas assumption we may neglect intrinsic 3 and 4 body cor-
relations, that is, we may neglect correlations where the two particle pairs are

not identical. For example, we shall take

(2 1a0) 0,011 otiant =) —ao) ) = 0. (.3} 0
1)
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Each particle pair contributes O (%) to the average, where n is the mean particle

density. Discarding terms O (%), leaves just w2, ¢;.(7), a;;..(7) and b,..(7). The
same assumptions also give
¢ii(7) = 2 [ay;(7) + 4byii(7)] - (28)

With these simplifications, the differential equation, (10), decouples by particle.

3.4 Eigenvalues of separation evolution

The problem has reduced to finding the eigenvalues of a single particle block
which can be thought of as a 36 x 36 matrix. The problem further diagonalizes
into nine 4 x 4 submatrices according to the eigen-directions of the operator J.
The only eigen-direction which can contribute to < A > has eigenvaluelll, J = 4
(see Appendix B). Therefore the fourth rank coefficients will appear only in the

combination, a“»“»(T) + 4biiii(T) = %C“(T)

Adopting the notation,

c, = / dr e (7); m=20,1,or2, (29)
0

0 0 0 0 0 —wi —w; 0 —2¢ 34 261 %
1000, |0 0 0 —wi || O ¢y —3C 3¢ 7
1 000 0 0 0 —wizi 0 —%cz —c, %cl
01 10 0 0 0 0 0 0 0 0
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The eigenvalues, v, of matrix (30) are discussed in Appendix C. The Lyapunov
exponent is given by, A = %max Re(v). Typically, each gas particle finds itself in
a cage formed by all the others. On average it experiences a potential well whose
bottom is at the center of the cage. Hence the second derivative sign implies,
w? > 0, which, by itself, would make v imaginary. (For the coulomb force,
w; = 0). In addition, if the auto-correlation time is short, then ¢, dominates
terms with ¢; or ¢, in the secular equation. If we take this to be so then there is
i

indeed a solution with positive Re(r), namely, v = [200] *. Hence the Lyapunov

exponent for a dilute gas (or unmagnetized plasma) in equilibrium is given by,

- {%0}/ - [é /Ooodr ( Tr(v%qi(())-\{mi(—r))>>}% (31)

3.5 Lyapunov exponent and fluctuations

Equation (31) shows the equilibrium Lyapunov exponent to be proportional to
the cube root of the integral of an auto-correlation function of the fluctuations

[14,16] relates lin-

of a dynamical variable. The fluctuation-dissipation theorem
ear response functions to corresponding correlation integrals. The correlation in
equation (31) is for a single particle property. The intensities and correlation
time-scales of different single particle properties may be expected to vary in the
same way with changes in system parameters such as temperature and pressure.

In particular the self-diffusion coefficient is proportional to the time integral a

particle’s velocity autocorrelation,

1

D= 3 /Ooodr (v(0) - v(71)). (32)
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(Note that this quantity is distinct from the spatial diffusion coefficient which
becomes large in the collisionless limit while self-diffusion does not). This leads
us to suggest that the Lyapunov exponent is proportional to the cube root of the

diffusion coefficient,

" (33)

2
p ?

where w, is a characteristic interaction frequency and a; is a characteristic inter-

particle distance.

100 T T T TTTT T T T TTTT T T TTTT ,7\\ T T T TTT

L
(g 10_1 — |
10_2 1 L1 \\\H‘ 1 L1 \\\H‘ L1 \\\H‘ Lo rrll
103 102 10-1 100 101
D/[w,a?]

Figure 2: Lyapunov exponent versus diffusion coefficient for
plasma parameter, I'; values between 1 and 150. The data
were computed for a one component plasma by Nishihara
et al.l2™4 The line is A = a D*—the law suggested by the
theory.

(274 measured both the Lyapunov

In numerical simulations, Nishihara et al.
exponent and the self-diffusion coefficient for the ions in a one component plasma.

The results, plotted in Figure 2, clearly show a one third power dependence of

Lyapunov exponent on diffusion coefficient over nearly three decades of diffu-
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sion data. This one third power relationship with a transport coefficient is a

consequence of the dilute gas Lyapunov exponent theory.

4 One component plasma example

We now apply the theory to a one component plasma. The plasma will comprise

protons of mass, m,, and charge, ¢, in a uniform neutralizing background. The

o o

interaction is via the Coulomb potential, ¢(r) = qT. The rotational average of
the second derivative of this potential is identically zero because Vz% = 0. The
Coulomb force gives rise to long range correlations amongst the ions, leading to
Debye screening. With care, one can evaluate equation (31) using the Coulomb
potential and an ensemble with a radial distribution function, g(rij) =n, —
k3, /4n] exp(—kpr;;)/ry;- (n, is the ion number density and kj, is the inverse
Debye screening length). However, in the exposition which follows, we shall

get the same answer by absorbing the pair correlation function into an effective

Debye-screened potential,

2
o(r) = Leekor, (34)

”
and using an uncorrelated ensemble. For convenience, we shall use units with
m, =1 and then restore mass units at the end.

The potential energy of the ion system is given by,

N N

V=233 ollg, — ayl) (33)

a=1b=1
Since the plasma is supposed dilute we shall treat the interaction between two

ions as ballistic,

q,(—7) = q;(0) — p,T. (36)
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With this approximation it is most convenient to use a Fourier representation of

the second derivative of the potential energy,

‘{]iQi(_T) = _Z/dSk kk qg(k;) eik'[Qi_Qb] e_ik~[pi—pb]r7 (37)
bAi

where the Fourier transform of ¢(r) is

~ A ¢? 1
(k) = ﬁma (38)

and we have written g, = q,(0).

In averaging the cross-correlation, ¢, (1) = 2( Tr(V, 4.(0) -V (=7))), we
shall use an ensemble distribution uniform in space and maxwellian in momen-
tum. We shall neglect correlation distribution (beyond our effective potential)
because the residual effects of this are of a higher order than the term itself. The
multi-particle distribution function thus factors into a product of one-particle

distributions,

“piopr |~ 7, 39
filg;,p;) = ﬁ[ T p] exp —ﬁ ) (39)

where n, is the ion density, Tp is the ion temperature in energy units. The
cross-correlation contains a double sum over ions different from ¢ arising from the
double application of equation (37). Where the two ions are different, the spatial

integral of the ensemble average on the complex exponential factor yields,

[Zi]:,) / d’q, ™ — §(k). (40)

The 63(k) is multiplied by k so the result is zero. This is consistent with the

assumption, used in the dilute gas theory, that disjoint pairs of particles are
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uncorrelated. Hence only the NV — 1 diagonal terms in the double sum contribute

to the correlation, ¢, (7). They evaluate identically to give,

culr) = 2=y (2] e [y, eno (—%)

[kq - k. J? . o [p:
d’q,d°q, | I’k / &’k cilkotkr][gi—as] —ikr[pi—pelr (41
/ ¢y / kz + kz [kz T kz] e ( )

Changing the order of integration to perform the real space (g, and q;) integrals

first yields two factors of 53(k0 + kr). Taking into account the finite real volume

we should interpret the space integrals as,

/d3 idqu ei[ko+kr]~[Qi—Qb] — [27.[.]3%53(’60 + kr) (42)
p

Performing the k triple integral then sets k = k_ = —k,. Using these results in

equation (41), and neglecting 1 compared to N gives,

2 2 2 4

2[4r)%q} p/ _ p?+ P / 3 k —ik-[pi—ps]
.. - = @ & d d _tr L0 dki 2 y24 pr‘
() a3 2a T )3 Py 5P 27, GEG

(43)
Next we perform the momentum integrals,
2 [47]%qln, Kt
(= P Pl ~T k*+? 44
C“(T) 3 [27'[']3 / [k2 _I_ k%]z eXp( P T )7 ( )

and the angular part of the k integral to get,

16 kS
cil(T) = gqj np/dkm exp(—T, KT, (45)
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The cross-correlation in equation (31) is the time integral of ¢, (7). Perform-

ing this integral yields,

Yo, b
16 , .6 T2m
= — dk P 46
‘0 3%”1’/ (2 + kB2 2Tk (46)

. o T,
where we have also restored mass units by writing I everywhere Tp occurred.
r

This last integral diverges as & — oo. The ions almost never have encounters at
very short distances, however, (and when they do the ballistic encounter approxi-
mation fails severely). We shall, therefore, truncate the integral at an upper limit
of £ . It is also convenient to write the integral in dimensionless form using a

scaled variable, x = k/k), and to rewrite the dimensioned coefficients in terms

2
of the plasma frequency, given by w? = e — k%i—p, and the dimensionless
r

P my

ar % @ — 4 ;
plasma parameter, I' = {?np} T = iy The result is,
2 gy [Trmes x5
9.3 h v
o = myw, 3%7T]/2T /0 dx e (47)

Evaluating the integral and substituting into equation (31) gives the Lyapunov
exponent,

& V. V.
c 2 |7 1 xfnam °
)\:[ 0 ] :wp{ 1“/2] [—§7+x2 —In(14+22 )| .

2 1 2 maxr max
4mp RECE 1 +axs

(48)

The choice of k__ (and hence z_ ) must be determined by physical consid-
erations. Variations in the plasma with a half-wavelength smaller than the order
of the inter-ion spacing, a;, are not meaningful. We therefore suggest a cutoff,

k__ =m/a;, that is,

a

v, = Cmex (49)
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We shall now consider some limiting plasma cases.

4.1 Dilute plasma limit

In the limit of a hot or sparse plasma whose plasma parameter, I' < 1, we have
x> 1, and the last square bracket in equation (48) goes asymptotically as

:1;7271“/2, giving us a plasma parameter dependence of

A 1
2 x Tk when I' < 1. (50)

w
pr

4.2 Liquid plasma limit

In the cold dense liquid plasma limit, when I' > 1, we have z_ . < 1, and the

6
max

last square bracket in equation (48) goes asymptotically as «> /6, giving us a

plasma parameter dependence of

A .
2 xT " when T'> 1. (51)

w
pr

5 Comparison with numerical simulations

Nishihara et al.>#] have used the SCOPE particle-particle particle-mesh program
to simulate a one component plasma in equilibrium for a range of values of the
plasma parameter, I'. The program was adapted to calculate the Lyapunov
exponent by following the evolution of two initial conditions differing slightly
from one another. For 170 > I' > 1 their results are consistent with the "% law

derived above. For I" < 1 they find the Lyapunov exponent to be nearly constant.
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6 Discussion and conclusions

We have shown that the Lyapunov exponent of a dilute gas in equilibrium is
proportional to the cube root of a fluctuation correlation function. One of the
surprises of Figure 2 is that this cube root law holds even for fairly dense plasmas.
When estimating the eigenvalues of the matrix (30), we assumed that we could
neglect terms with ¢, and ¢, compared to ¢,. In the dense regime, these terms bear
a simple relation to one another. As a result the secular equation in Appendix C
may be written simply in terms of ¢,. The eigenvalue remains proportional to
c(;/g’ but with a different constant numerical coefficient.

Other workers have found one third power rules between a diffusion coeffi-
cient and exponential path separation in different contexts. Seki et al.l'7] used
a Langevin equation to explore diffusion in turbulent media. For intermediate
times, they found, adjacent fluid elements separate exponentially at a rate propor-
tional to the one third power of the long term diffusion constant. In Dupree’s!!®]
theory of plasma turbulence, a mode’s exponential growth rate is proportional to
the one third power of the velocity space diffusion constant which is proportional
to the turbulent fluctuations.

The theory developed in this paper might find application in other many
body systems, such as the cosmological scattering of photons by gravitational

lensing, where Fukushige et al.l']

have noted an exponential path divergence for
adjacent light rays undergoing multiple scattering.
This theory might also be applied to study the diffusion of trace elements

due to environmental fluctuations.

This paper developed the ab initio Lyapunov exponent theory for the example
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of a dilute gas near equilibrium. A future paper will develop an example for lattice
vibrations of an anharmonic crystal.

Our theory establishes firmly the connection between the many body Lya-
punov exponent and fluctuations. We believe that the Lyapunov expansion rate
should be regarded as a system parameter. Since it is readily definable almost
anywhere in phase space, it can provide a link between states near to and far

from equilibrium.
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Appendix A

Rotational averaging of rank four tensors

This appendix considers the rotational averaging of a fourth rank tensor with
outer product form, AQB.
In cartesian components, the rotationally averaged outer product tensor must

have the form of an isotropic fourth rank tensor,

(AOB) . =al, 6.5 +b5 S+l ;6 (A-1)

afyd — af “yd ay "6 ad By

To evaluate the coefficients a, b, and ¢, we can perform tracing (contracting) over

pairs of indices, since the trace operation commutes with a rotational average:

(Tr(A)Tr(B)) = 9a + 3b + 3¢; a with 3, and v with 4. (A-2)
<Tr(.AT- B)> = 3a + 96+ 3¢; a with v, and 3 with 4. (A-3)
(Tr(A-B)) =3a+ 3b+ 9¢; a with 4, and 3 with ~. (A-4)

Solving for the coefficients gives,

a = % [4(Tr(A)Tr(B)) — (Tr(AT-B)) — (Tr(A-B))], (A-5)
b= % [4(Tr(AT-B)) — (Tr(A-B)) — (Tr(A)Tr(B))], (A-6)
¢ = % [4(Tr(A-B)) = (Tr(A"-B)) — (Tr(A)Tr(B))]. (A-T)

22



If either A or B is symmetric then the solution further simplifies to

(ARB) = al+b7J,

where,
Jaﬁ75:5a75ﬁ5+5055ﬁ77 and7 ]IE ].(@]_7
and,
1
“=1z [2(Tr(A)Tr(B)) — (Tr(A-B))],
and

b= %HTT(A)T?“(B» +3(Tr(A- B))].
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Appendix B

Eigenvalues of non outer
product rank 4 operator

The isotropic fourth rank tensor J, defined in Appendix A,
Ja’)/ﬁ(;: 5&[95’75—'_50155[9’77 (B*].)

does not have outer product form with respect to operations on a second rank
tensor, DCW;. We wish to find its eigenvalues, J, and eigentensors, X, solutions of
the equation,

Javﬁéx,yé — J:X:aﬁ, (B*Q)

where a repeated pair of indices implies contraction over that pair.

By inspection we can identify the eigentensor with eigenvalue J = 4,

X

25 =0

vé
(B-3)

= [z0T + Yoy + 202] 4,
where &, ¥, and z are the cartesian unit vectors. In the coordinate system where

x, =0, Y, =9 we can express the five eigentensors with

o0 and, z, = 4,

3q?

eigenvalue, J = 1, as
[0y + yoz),  [yoz+:20¥y],  [202 + &0z,

and, (B-4)
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25
There are three eigentensors with eigenvalue, J = —1,
[;i:@’g - @®§3]7 [@@2 - 2®@]7 andv [Z@QZ - w®z] (B75)

Only the J = 4 eigentensor in (B-3) has a nonzero trace which can contribute

to the mean square length, (|A[?).



Appendix C

Eigenvalues of dilute gas Lyapunov matrix

The 4 x 4 matrix in (30) is the asymptotic operator which gives the Lyapunov
expansion. The expansion will be dominated by the eigenvalue, v, with the largest
real part. Since the operator is part of the evolution equation for the square of

the phase-space separation, the Lyapunov exponent is half this eigenvalue,

A= %max Re(v). (C-1)

The secular equation for the eigenvalues of (30) is

1. _ 1. _ .2
—v—=2c 3¢ —w,; 36 —w €
1 —v—c —1Le 3¢, —w?
det 2 272 271 1| — 07 (072)
1 3 2
1 —26 VT 6y 56 T Wy
0 1 1 —v

which expands to

11

[1/ + %cz] {1/3 + %cz v+ {3c§ —4 [cl — wz»ﬂ v —6cyc, — 2¢,| = 0. (C-3)

It is instructive to analyze the solutions of equation (C'-3) for various ranges

of the parameters,

0. [200] 137 or [200]1/3 eﬂ:2i7r/37 with (a) Cy =c; = Wi = 0;

v=140,0,o0r £2[c, — wizi]l/z, with (b) ¢, =1¢,=0; (C-4)
3

0, —%cz, —5€y, OF — 2¢,, with (¢) ¢y =¢, =w? =0.
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In case (¢), v <0, so it cannot produce Lyapunov expansion. Case (b) can have

a positive v if ¢, > w? (otherwise the nonzero eigenvalues are imaginary). Case
1

(a) has one unequivocally positive solution, namely v = [200] /3.

To consider the relative magnitudes of the parameters we introduce the corre-

lation time, 7, which we wish to treat as a small parameter in the same sense that

the Kubo number, a7,, was a small parameter in Section 2.2 and referencel'®],
Then we may expect the following,
1,
€ T, Cp, and, €y = TG (C-5)
Suppose that
V:V0‘|'5V1+52’/2‘|‘"'7 (C-6)

where 3 is used to keep track of perturbation order and we shall set it to 1 at
the end. In equation (C-3) we shall rewrite ¢, as 3 ¢y, and ¢; as Bc;. We shall

also take wizi = O(). Equating coefficients of powers of 3 gives,

vs —2¢, =0, (C-7)
Sy, — 4], —wi] v, =0, (C-8)
etc. which give us,
vo=[2e . and,v= e~ (C9)
3[2¢,]"

To leading order, then,
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