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Lyapunov Exponent of a Many Body System and Its Transport Coefficients
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An ab initio theoretical expression for theN-body Lyapunov exponent of a dilute gas is derived.
shows the Lyapunov exponent to be a function of the time integral of the correlation function fo
second derivative of the interparticle potential (approximately a power

1
3 law). This establishes a link

between the Lyapunov exponent and the transport coefficients. We compare the theory with num
simulations of a one component plasma.

PACS numbers: 05.45.+b, 05.60.+w
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The Gibbs ensemble in statistical mechanics serves
a microscopic formulation of equilibrium thermodynam
ics, and the fluctuation-dissipation theorem provides a m
croscopic connection to the system response functions
transport coefficients which characterize small departu
from equilibrium. Far from equilibrium, Lyapunov expan
sion is a property with the potential to provide a usef
microscopic description, when local definitions of quas
equilibrium quantities, such as temperature and press
may no longer have meaning. The Lyapunov expone
measures the rate at which a system “forgets” its init
conditions. The transport coefficients are those respo
functions of the system that also measure a “forgetting
For example, scattering erases a particle’s memory of
original velocity and so give rise to a finite diffusion coeffi
cient. The work reported here creates anab initio N-body
microscopic theory of the microscopic Lyapunov expone
and gives an explicit functional relationship to a correlatio
function, in the limit of thermal equilibrium. We compare
the theory with the numerical simulation of a one comp
nent plasma by Nishiharaet al. [1,2].

A classical system ofN particles in three dimensions
has 3N-dimensional vectorsp and q, respectively. We
may represent these by a phase point,Y ; s p

q d, in
6N-dimensional phase space. For simplicity, we sh
assume the particles have unit mass and a Hamilton
of the formH ­

1
2 p ? p 1 V sqd. Hamilton’s equations

of motion for the system are

ÙY ;
µ

Ùp
Ùq

∂
­

µ
2Vq

p

∂
; GsYd , (1)

where the notationVq means the3N gradient in the
coordinates,≠Vy≠q. The detailed evolution of a system
of interacting particles is, typically, very sensitive t
changes in initial conditions. The Lyapunov expone
quantifies this sensitivity as follows. Consider a referen
trajectory whose phase space point at timet is Ystd. At
time t ­ 0 let another identical system be started whic
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is infinitesimally displaced from the reference trajecto
by Ds0d. This displaced trajectory will evolve in time to
Ystd 1 Dstd. SinceDstd is infinitesimal, its equation of
motion is given by the derivative of Hamilton’s equation

ÙDstd ­
≠GsssYstdddd

≠Y
? Dstd ; T sssYstdddd ? Dstd . (2)

In sensitive systems, the displaced trajectory diverg
from the reference system exponentially, on average. T
mean exponential divergence rate is defined by [3]

lsssYs0d, Ds0dddd ­ lim
t!`

jDs0dj!0

1
t

ln
jDstdj
jDs0dj

. (3)

The Lyapunov exponentl . 0 and is independent of the
direction of initial displacementDs0d (unless it lies en-
tirely in a special subspace which excludes the maxima
expanding direction).

Other authors have sought analytic expressions
Lyapunov exponents of many body systems. Evans
has derived a short time formula to describe the me
separation of closely adjacent trajectories. The formu
is based on a correlation in time, but lacks the tim
translation symmetry even in equilibrium. Chaudhu
Gangopadhyay, and Ray [5] found a formula for
driven nonlinear oscillator (a system with one degr
of freedom). It relates the Lyapunov exponent to
correlation in the second derivative of the potential. Th
reduce their equivalent of Eq. (2) to a simple harmon
oscillator with a stochastic frequency and apply th
standard results of van Kampen [6].

Many authors have been exploring the connection b
tween transport coefficients and Lyapunov exponen
Some examples are Gaspard and Nicolis [7] who find
connection between the diffusion coefficient of a Loren
gas and its positive Lyapunov exponents and the K
mogorov entropy; Evans, Cohen, and Morriss [8] wh
found a relation between viscosity and the maximum a
© 1996 The American Physical Society
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minimum Lyapunov exponents which they computed fo
an upshifted Lennard-Jones potential in a nonequilibriu
molecular dynamics simulation; and Chernovet al. [9]
who proved, for a Lorentz gas, that Ohm’s law entrop
production is equal to minus the sum of the Lyapunov e
ponents. This paper presents anab initio theory for the
Lyapunov exponent of a many body system. An explic
form for a dilute gas, in the equilibrium limit, makes a
connection with correlation functions and hence transp
coefficients (via the fluctuation-dissipation theorem [10]

We shall develop an equation of motion for the squa
infinitesimal distance,jDstdj2, between two adjacent tra-
jectories in phase space. In order that the problem sho
remain linear we actually work with the outer product o
Dstd with itself, fD ≠ Dg std. The steps of our solution
are as follows.

(1) Form the outer product of the displacement,D ≠ D
(a 6N ≠ 6N component entity).

(2) Solve the equation of motion

d
dt

fD ≠ Dg std ­ Tstd ? fD ≠ Dg std , (4)

where T ; T ≠ 1 1 1 ≠ T is the fourth rank, outer
product version of the stability matrix appearing i
Eq. (2). Tstd is shorthand forTsssYstdddd, the t dependence
being through the reference trajectoryYstd. The solution
of Eq. (4) is formally a time-ordered exponential,

fD ≠ Dg std ­ expT

√Z t

0
dt Tstd

!
? fD ≠ Dg s0d . (5)

(3) Average Eq. (5) over an ensemble of reference t
jectories and then differentiate to form a new differenti
equation forkD ≠ Dl std,

d
dt

kD ≠ Dl std ­ Lstd ? kD ≠ Dl std . (6)

(4) EvaluateLs`d ­ limt!` Lstd, since for large times
Lstd should approach a constant value (i.e., forget t
initial conditions).

(5) Find the eigenvaluen of Ls`d with the largest
real part. SincejDstdj2 ­ TrsssfD ≠ Dg stdddd, the Lyapunov
exponent is

l ­
1
2 max Resnd . (7)

The rules for operating with outer product operators a
fA ≠ Bg ? fC ≠ D g ; fA ? Cg ≠ fB ? D g, and dot
productss?d distribute over terms in a sums1d.

We shall apply a standard perturbation technique [6,1
to evaluateLs`d to second order. In the dilute gas
example, the zeroth and first order terms yield oscillato
eigenvalues only. The second order term (which involv
correlations) is essential to reveal Lyapunov expansi
behavior. LetT std ­ T0 1 T1std, where T0 is time
independent andT1std varies in time through a reference
trajectory drawn from an ensemble. Evaluating Eq. (
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formally to second order inT1 gives an asymptotic
evolution equation [11,12],

d
dt

kD ≠ Dl std ­
t!`

"
T0 1 kT1stdl

1
Z `

0
dtkkT1std ? etT0 ?T1st 2 td ? e2tT0 ll

#
? kD ≠ Dl std , (8)

where kkABll ; kkkfA 2 kAlg fB 2 kBlglll is the correlation
of A and B. The three terms in the square brackets a
respectively, the zeroth, first, and second order terms
the perturbation expansion ofLs`d. We considerT1std to
be small when the Kubo numberatc is small, wherea

is the rms magnitude ofT1std andtc is the characteristic
autocorrelation decay time scale.

For a dilute gas with a Hamiltonian of the formH ­
1
2 p ? p 1 V sqd, we partition the stability matrixT of
Eq. (2) into a constant partT0 due to free particle ballistic
motion and a time dependent perturbationT1std due to
particle interactions, where

T0 ­

µ
0 0
1 0

∂
and T1std ­

µ
0 2Vqqsssqstdddd
0 0

∂
. (9)

The corresponding outer product operators are

T0 ­ T0 ≠ 1 1 1 ≠ T0 ,

T1std ­ T1std ≠ 1 1 1 ≠ T1std .
(10)

The first order term in Eq. (8) is simply

kT1stdl ­ 1 ≠ kT1stdl 1 kT1stdl ≠ 1 . (11)

We evaluate the exponential factor of the second or
term by

etT0 ­ etT0 ≠ etT0 . (12)

For ballistic motion, using Eq. (9), we have

etT0 ­

µ
1 0
t 1

∂
. (13)

In order to better understand the explicit form of th
integrand in the second order term of Eq. (8), it is help
to “flatten” the 6N ≠ 6N phase space outer product in
a four-component column of3N ≠ 3N outer products
showing the momenta and positions explicitly:

D ≠ D ;

0BBB@
Dp ≠ Dp

Dp ≠ Dq

Dq ≠ Dp

Dq ≠ Dq

1CCCA . (14)
1813
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In this representation the integrand in Eq. (8) becomes

kkT1std ? etT0 ? T1st 2 td ? e2tT0 ll ­0BBBB@
2t2kkV0 ? Vt 1 V

T
0 ? VT

t ll tkkV0 ? Vt 2 V0 ? VT
t ll tkkVT

0 ? VT
t 2 V

T
0 ? Vtll kkV0 ? VT

t 1 V
T
0 ? Vtll

0 2t2kkVT
0 ? VT

t ll 2t2kkVT
0 ? Vtll tkkVT

0 ? Vt 1 VT
0 ? VT

t ll
0 2t2kkV0 ? VT

t ll 2t2kkV0 ? Vtll tkkV0 ? VT
t 1 V0 ? Vtll

0 0 0 0

1CCCCA ,

(15)
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where Vt ; 1 ≠ Vqqsssqst 2 tdddd and its transpose is
VT

t ; Vqqsssqst 2 tdddd ≠ 1. The elements of the matrix
in Eq. (15) have the structure of 1,t, or t2 times a
correlation function. The correlation functions are of tw
types,

kkV0 ? Vtll ­ 1 ≠ kkVqqsssqstdddd ? Vqqsssqst 2 tddddll , (16)

where the correlation itself has rank 2 and rank 4 terms
the formkkVT

0 ? Vtll. It is important to note thatqst 2 td
is just an earlier point of the trajectory specified byqstd.
The trace back in time must be done before averaging o
the ensemble ofhpstd, qstdj, which define the reference
trajectories.

The next step is to average over an ensemble of r
erence trajectories—equilibrium here—in order to sho
the relation to other statistical quantities. We shall use t
following conventions: unsubscriptedp and q will rep-
resent the3N-dimensional vectors of momenta and pos
tions of all the particles. When we use subscripts, the
will label the coordinates of a particular particle. For ex
ample,pi is the three-momentum vector for particlei.

A dilute monatomic gas in equilibrium is, on averag
both isotropic and time translation invariant. The tim
translation invariance allows us to replacet by 0 in
Eqs. (11) and (15). The rotational isotropy applies to t
3 3 3 submatrices (labeled by pairs of particles,i and
j) and 3 3 3 ≠ 3 3 3 fourth rank tensors of the form
kVqiqj

s0d ≠ Vqkql
s2tdl. Rotational averaging of tensors

is treated in Appendix B of Barnett [12]. We sha
assume thatV sqd can be expressed as a function o
the NsN 2 1dy2 pair differences in particle coordinates
qi 2 qj. With this conditionVqiqj is a symmetric matrix
even wheni fi j.

In Eq. (11) the rotational isotropy simplifies eac
submatrix to

kVqiqj s0dl ­
1
3

kTrfVqiqj s0dgl1 ; v2
ij1 . (17)

Similarly, each submatrix in Eq. (16) averages to

kkVqqsssqs0dddd ? Vqqsssqs2tddddllij ­
1
3

NX
k­1

kkTrfVqiqk
sssqs0dddd

? Vqkqj sssqs2tddddgll1

; cijstd1 . (18)
1814
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Rotational averaging the fourth rank subtensor gives

kkVT
0 ? Vtllijkl ­ aijklstdI 1 bijklstdJ , (19)

where the 3 3 3 3 3 3 3 tensors are Jabgd ­
dagdbd 1 daddbg and I ; 1 ≠ 1, and the coeffi-
cients, labeled by particles andt, are

aijklstd ­
1

15
f2kkTrhVqi qj sssqs0ddddjTrhVqkql sssqs2tddddjll

2 kkTrhVqiqj
sssqs0dddd ? Vqkql

sssqs2tddddjllg , (20)

bijklstd ­
1

30
f 2 kkTrhVqiqj

sssqs0ddddjTrhVqkql
sssqs2tddddjll

1 3kkTrhVqiqj sssqs0dddd ? Vqkql sssqs2tddddjllg .

(21)

To make further progress with the second order term
shall assume that the potential energy is particle pairw
additive and the pair interaction has finite range. E
amples of such forces are Lennard-Jones and scree
Coulomb. The finite range allows us to neglect cont
butions to the correlation average from neighbors outs
a small interaction volumes. Under the dilute gas as
sumption we may neglect intrinsic three and four bo
correlations, that is, we may neglect correlations whe
the two particle pairs are not identical. Each particle p
contributesOssnyNd to the average, wheren is the mean
particle density. Discarding termsOs1yNd leaves just
v

2
ii, ciistd, aiiiistd, and biiiistd. The same assumption

also give

ciistd ­ 2faiiiistd 1 4biiiistdg . (22)

With these simplifications, the differential equation, (8
decouples by particle.

The problem has reduced to finding the eigenvalues
a single particle block, which can be thought of as a36 3

36 matrix. The problem further diagonalizes into nin
4 3 4 submatrices according to the eigendirections of t
operatorJ. The only eigendirection which can contribut
to kjDj2l has eigenvalue [12]J ­ 4. Therefore the fourth
rank coefficients will appear only in the combinatio
aiiiistd 1 4biiiistd ­

1
2 ciistd.

Adopting the notation

cm ;
Z `

0
dt tmciistd, m ­ 1, 2, or 3 , (23)
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the resulting matrix whose eigenvalues we seek is0BBB@
0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

1CCCA 1

0BBB@
0 2v

2
ii 2v

2
ii 0

0 0 0 2v
2
ii

0 0 0 2v
2
ii

0 0 0 0

1CCCA1

0BBBBB@
22c2

1
2 c1

1
2 c1 c0

0 2c2 2
1
2 c2

3
2 c1

0 2
1
2 c2 2c2

3
2 c1

0 0 0 0

1CCCCCA . (24)

The eigenvaluesn are solutions of

fn 1
1
2 c2g hn3 1

7
2 c2n2 1 f3c2

2 2 4sc1 2 v2
iidgn2

6c1c2 2 2c0j ­ 0 .

(25)

The Lyapunov exponent isl ­
1
2 max Resnd. Typically,

each gas particle finds itself in a cage formed by all t
others. On average, it experiences a potential well who
bottom is at the center of the cage. Hence the seco
derivative sign impliesv2

ii $ 0, which, by itself, would
make n imaginary. (For the Coulomb force,v2

ii ­ 0.)
In addition, if the autocorrelation time is short thenc0
dominates terms withc1 or c2 in Eq. (25). If we take this
to be so then there is indeed a solution with positive Resnd,
namely,n ­ f2c0g1y3. Hence the Lyapunov exponent fo
a dilute gas in equilibrium is given by

l ­

∑
c0

4

∏1y3

­

∑
1
6

Z `

0
dtkkTrfVqiqi

s0d ? Vqiqi
s2tdgll

∏1y3

. (26)

Equation (26) shows the equilibrium Lyapunov expo
nent to be proportional to the cube root of the integr
of an autocorrelation function of the fluctuations of
dynamical variable. The fluctuation-dissipation theore
[10,13] relates linear response functions to correspon
ing correlation integrals. The correlation in Eq. (26)
for a single particle property. The intensities and co
relation time scales of different single particle properti
may be expected to vary in the same way with chang
in system parameters such as temperature and press
In particular, the diffusion coefficient is proportional to
the time integral of a particle’s velocity autocorrelation
This leads us to suggest that the Lyapunov exponen
proportional to the cube root of the diffusion coefficien
Nishihara et al. [1,2] have run simulations of a dens
one-component plasma usingSCOPE, a particle-particle
particle-mesh code. They measured both the Lyapun
exponent and the self-diffusion coefficient for a range
plasma parameters. The plasma parameter is the rati
mean potential energy to kinetic energy for the charg
particles. The results, plotted in Fig. 1, clearly show
e
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FIG. 1. Lyapunov exponent versus the diffusion coefficie
for plasma parameterG values between 1 and 150. The dat
were computed by Nishiharaet al. [1,2] for a one-component
plasma. The line isl ­ aD1y3 —the law suggested by the
theory.

one-third power dependence of the Lyapunov expone
on the diffusion coefficient over nearly three decades
diffusion data.
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