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Lyapunov Exponent of a Many Body System and Its Transport Coefficients
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An ab initio theoretical expression for thg-body Lyapunov exponent of a dilute gas is derived. It
shows the Lyapunov exponent to be a function of the time integral of the correlation function for the

second derivative of the interparticle potential (approximately a pqle\/ewv). This establishes a link
between the Lyapunov exponent and the transport coefficients. We compare the theory with numerical
simulations of a one component plasma.

PACS numbers: 05.45.+b, 05.60.+w

The Gibbs ensemble in statistical mechanics serves as infinitesimally displaced from the reference trajectory
a microscopic formulation of equilibrium thermodynam- by A(0). This displaced trajectory will evolve in time to
ics, and the fluctuation-dissipation theorem provides a miY'(r) + A(z). SinceA(z) is infinitesimal, its equation of
croscopic connection to the system response functions andotion is given by the derivative of Hamilton’s equation:
transport coefficients which characterize small departures
from equilibrium. Far from equilibrium, Lyapunov expan- A( ) = IG(Y()
sion is a property with the potential to provide a useful aY

micr_qsc_opic desc.ri_ption, when local definitions of quasi-|,, sansitive systems, the displaced trajectory diverges
equilibrium quantities, such as temperature and Pressurgo 1 the reference system exponentially, on average. The

may no longer have mea_ming. The L;{‘apunov” ?Xp_or_".a%ean exponential divergence rate is defined by [3]
measures the rate at which a system “forgets” its initia
1, 1A

conditions. The transport coefficients are those response .
functions of the system that also measure a “forgetting.” A(Y(0), A(0)) = ,'l‘l ; M |A0)] (3)

For example, scattering erases a particle’s memory of its 1A(0)}—0

original velocity and so give rise to a finite diffusion coeffi- The Lyapunov exponent > 0 and is independent of the
cient. The_ work reported hgre creat_esadmnltlo N-body direction of initial displacemenA(0) (unless it lies en-
microscopic theor_y.of the microscopic Lygpunov expon_en}irely in a special subspace which excludes the maximally
and gives an explicit functional relationship to a Correlat'onexpanding direction)

function, in the limit of thermal equilibrium. We compare Other authors have sought analytic expressions for

the theory with the numerical simulation of a one CompO'Lyapunov exponents of many body systems. Evans [4]
nezt pllasr_nalby Nt'Sh'haflit aI.E;,IZ]. in th di . has derived a short time formula to describe the mean
h 3(;Va3_5|ca SYS elm Ot partic SS in reet_ lrrrens\llsns separation of closely adjacent trajectories. The formula

as SiN-dimensional veclorp and g, reSpectively. € is based on a correlation in time, but lacks the time

S A
may represent these by a phase pom’t',—_ (g), in translation symmetry even in equilibrium. Chaudhuri,
6N-dimensional phase space. For simplicity, we shal angopadhyay, and Ray [5] found a formula for a

assume the pirnlcles have unit mass ant;j a Ham'lton'a@riven nonlinear oscillator (a system with one degree
of the formH = ;p - p + V(¢). Hamilton's equations ot freedom). It relates the Lyapunov exponent to a

AN =TX@®) - A@D). (2

of motion for the system are correlation in the second derivative of the potential. They
. p v reduce their equivalent of Eq. (2) to a simple harmonic
Y = <q> < q) = G(Y), (1)  oscillator with a stochastic frequency and apply the

standard results of van Kampen [6].

where the notationV, means the3N gradient in the Many authors have been exploring the connection be-
coordinatesgV/dq. The detailed evolution of a system tween transport coefficients and Lyapunov exponents.
of interacting particles is, typically, very sensitive to Some examples are Gaspard and Nicolis [7] who find a
changes in initial conditions. The Lyapunov exponentconnection between the diffusion coefficient of a Lorentz
quantifies this sensitivity as follows. Consider a referencggas and its positive Lyapunov exponents and the Kol-
trajectory whose phase space point at timis Y (7). At  mogorov entropy; Evans, Cohen, and Morriss [8] who
time r = 0 let another identical system be started whichfound a relation between viscosity and the maximum and
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minimum Lyapunov exponents which they computed forformally to second order inJ; gives an asymptotic
an upshifted Lennard-Jones potential in a nonequilibriunevolution equation [11,12],

molecular dynamics simulation; and Chernet al. [9]

who proved, for a Lorentz gas, that Ohm’s law entropy d .

production is equal to minus the sum of the Lyapunov ex- d,<A ® A) (1) {00 To + (T ()

ponents. This paper presents an initio theory for the %

Lyapunov exponent of a many body system. An explicit +[ dr{Ti(t) - e Ty(t — 7) - e‘ﬁu»}
form for a dilute gas, in the equilibrium limit, makes a 0

connection with correlation functions and hence transport -(A® A1), (8)

coefficients (via the fluctuation-dissipation theorem [10]).

We shall develop an equation of motion for the squareyhere (AB) = ([A — (A)][B — (B)]) is the correlation
infinitesimal distancelA(r)|*, between two adjacent tra- of A andB. The three terms in the square brackets are,
jectories in phase space. In order that the problem shoulgspectively, the zeroth, first, and second order terms in
remain linear we actually work with the outer product of the perturbation expansion bf=). We consideiT(¢) to
A(r) with itself, [A ® A](z). The steps of our solution pe small when the Kubo numberr. is small, wherea

are as follows. . is the rms magnitude of(¢) and 7. is the characteristic
(1) Form the outer product of the displacemeft® A  gutocorrelation decay time scale.
(a6bN ® 6N component entity). For a dilute gas with a Hamiltonian of the fors =

(2) Solve the equation of motion ip - p + V(g), we partition the stability matrix?” of

d Eg. (2) into a constant paff, due to free particle ballistic
E[A ® AJ(r) = T(r) - [A ® A](7), (4)  motion and a time dependent perturbati@n(s) due to
particle interactions, where
whereT=7 ®1 + 1 7 is the fourth rank, outer

product version of the stability matrix appearing in _ <0 O> and T,() — <0 —qu(q(t))> )
Eq. (2). T(z) is shorthand foff (Y (r)), ther dependence 7 \1 0 ) 0 '
being through the reference trajectdxy(z). The solution
of Eq. (4) is formally a time-ordered exponential, The corresponding outer product operators are
t
[A®M@=em([dﬂho-M®Amw(& To=To®1l+1e Ty, 10)
0

Ti)=T(H)®1+1® T,(t).
(3) Average Eqg. (5) over an ensemble of reference tra-
jectories and then differentiate to form a new differentialThe first order term in Eq. (8) is simply
equation fokA ® A)(z),
d M)y =1e(Ti()) + (i) ® 1.  (11)
A8 =10 (AeAa). (6)
We evaluate the exponential factor of the second order
(4) Evaluatel(«) = lim,—.. L(#), since for large times term by
L(z) should approach a constant value (i.e., forget the
initial conditions). e — 07T g o7 T0. (12)
(5) Find the eigenvaluer of [L(«) with the largest

real part. SincéA(r)]> = Tr([A ® A] (7)), the Lyapunov  For ballistic motion, using Eq. (9), we have
exponent is

A = L max Rev). (7) y%=<i?) (13)

The rules for operating with outer product operators are o
[A® B]-[C®D]=[A-C]®[B D], and dot In order to better understand the explicit form of the

products(-) distribute over terms in a suf). integrand in the second order term of Eq. (8), it is helpful

We shall apply a standard perturbation technique [6,1110 ‘flatten” the6N ® 6N phase space outer product into
to evaluatel () to second order. In the dilute gas & four-component column o8N ® 3N outer products
example, the zeroth and first order terms yield oscillatoryghowing the momenta and positions explicitly:
eigenvalues only. The second order term (which involves

correlations) is essential to reveal Lyapunov expansion A,®4,
behavior. Let7 (1) = To + T,(t), where Ty is time A®A = A, ®4, 14
| o + T Veall (14)
independent and’;(¢) varies in time through a reference q P
trajectory drawn from an ensemble. Evaluating Eq. (6) A 04,
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In this representation the integrand in Eq. (8) becomes
(Ti(@) - e™ Tt —7) - 7o) =

—TVo - Vo + Vg - VI) (Vo - Ve = Vo - VI)  7(Vg - VI =V - V)

0 —72(Vg - VI)
0 —7{Vo - V1)
0 0

(Vo - VI +Vj - V)

—m(Vo - Vo) Vg -V, + Vg - VD)
—72(Vo - V;) (Vo - VI + V- V) |
0 0

(15)

where V, =1 ® V,(¢(r — 7)) and its transpose is
VI =vVv,(g(t — 7)) ® 1. The elements of the matrix
in Eq. (15) have the structure of I, or 72> times a

correlation function. The correlation functions are of twowhere

types,

(Vo - Vo) = 1@ (Viq(q(1)) - Vgq(g(r — 7)), (16)

where the correlation itself has rank 2 and rank 4 terms of

the form{V{ - V,). Itis important to note thag(z — 7)
is just an earlier point of the trajectory specified ¢fy).

The trace back in time must be done before averaging overp, ;,(7) =

the ensemble ofp(r),q(¢)}, which define the reference
trajectories.

The next step is to average over an ensemble of ref-

erence trajectories—equilibrium here—in order to sho

the relation to other statistical quantities. We shall use th

following conventions: unsubscriptea and ¢ will rep-

resent the8N-dimensional vectors of momenta and posi-
tions of all the particles. When we use subscripts, thes
will label the coordinates of a particular particle. For ex-

ample,p; is the three-momentum vector for particle

A dilute monatomic gas in equilibrium is, on average,
The time

both isotropic and time translation invariant.
translation invariance allows us to replaceby 0 in

Egs. (11) and (15). The rotational isotropy applies to th
3 X 3 submatrices (labeled by pairs of particlésand

j) and3 X 3 ® 3 X 3 fourth rank tensors of the form
(V4.q,(0) ® V,,4,(—7)). Rotational averaging of tensors
is treated in Appendix B of Barnett [12]. We shall

assume thatV(q) can be expressed as a function of

the N(N — 1)/2 pair differences in particle coordinates,
q; — q;. With this conditionV,, is a symmetric matrix
even when # j.

In Eg. (11) the rotational isotropy simplifies each
submatrix to

1
(Vaig, ) = Z(TrVy, (D1 = wil.  (17)
Similarly, each submatrix in Eq. (16) averages to

N
(Vaq(q(0)) - Vgq(q(=7)))ij = % D (TilVy,4,(g(0)
k=1

" Vg, (g(=7))IN1

Cl']'(T)l . (18)
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Rotational averaging the fourth rank subtensor gives

(Vg - Vidiju = aiju (0 + biju(1)J, (19)
the 3 X 3 X3 X3 tensors are J,gys =

OayOps T 0456p, and I =1® 1, and the coeffi-
cients, labeled by particles and are

ajju(r) = %[Z«Tf{Vq,-q,(q(O))}Tf{quql(q(—T))}>>

— (Tr{V4,q,(9(0)) - Vgq,(q(=7)1)], (20)

%[ = (Tr{V4,q,(q(O)ITr{Vg,q,(q(=7))})

+ 3(Tr{V4,q,(9(0)) - Vg, (g(=7)1].

o make further progress with the second order term we
shall assume that the potential energy is particle pairwise
additive and the pair interaction has finite range. Ex-

mples of such forces are Lennard-Jones and screened

oulomb. The finite range allows us to neglect contri-
butions to the correlation average from neighbors outside
a small interaction volume. Under the dilute gas as-
sumption we may neglect intrinsic three and four body
correlations, that is, we may neglect correlations where

éhe two particle pairs are not identical. Each particle pair

contributesO(sn/N) to the average, where is the mean
particle density. Discarding term@(1/N) leaves just
w2, cii(7), aiii(7), and by (7). The same assumptions
also give
cii(1) = 2[a;ii(7) + 4bj;ii(7)]. (22)

With these simplifications, the differential equation, (8),
decouples by particle.

The problem has reduced to finding the eigenvalues of
a single patrticle block, which can be thought of a&6ax
36 matrix. The problem further diagonalizes into nine
4 X 4 submatrices according to the eigendirections of the
operatorl. The only eigendirection which can contribute
to (|A]?) has eigenvalue [12] = 4. Therefore the fourth
rank coefficients will appear only in the combination
a;jii (1) + 4bjjii(1) = %Cii(T)-

Adopting the notation

0
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the resulting matrix whose eigenvalues we seek is 10° — ——— T — T ————rr
2 ey
000 0 0 —wi —wi 0 i / :
1 0 0 O 0 0 0 —wij; i / =10 i
1oo0ol"]lo o o -—w|" i 1
01 1 0 0o 0 0 0 1o =00 |
- =150 1
—26‘2 5C1 5C1 Co : :
1 3
0 - T30 gcl (24) L
h .
0 _562 —C2 Ecl 102 " Lo Lo e I R
0 0 0 0 10-3 102 101 100 101
D/[w,a?]

The eigenvalueg are solutions of o .
FIG. 1. Lyapunov exponent versus the diffusion coefficient

[v + %cz]{v3 + %czvz + [3¢5 — 4(c; — w2)v— for plasma parametel values between 1 and 150. The data
were computed by Nishiharet al.[1,2] for a one-component
6cicy — 2¢ot = 0. plasma. The line isA = aD'*—the law suggested by the

(25) theory.

The Lyapunov exponent i = %max Rév). Typically,
each gas particle finds itself in a cage formed by all th
others. On average, it experiences a potential well whose
bottom is at the center of the cage. Hence the secong
derivative sign impliesu,%- = 0, which, by itself, would R
make » imaginary. (For the Coulomb forcey} = 0.)

In addition, if the autocorrelation time is short thep
dominates terms with; or ¢, in Eq. (25). If we take this *Also at Advanced Science Research Center, Atomic
to be so then there is indeed a solution with positiv&Re Energy Research Institute, Ibaraki, Japan.
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