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Comment on “Lyapunov Exponent of a Many
Body System and Its Transport Coefficients”

In a recent Letter, Barnett, Tajima, Nishihara, Ueshima,
and Furukawa [1] obtained a theoretical expression for the
maximum Lyapunov exponent l1 of a dilute gas. They
conclude that l1 is proportional to the cube root of the
self-diffusion coefficient D, independent of the range of
the interaction potential. They validate their conjecture
with numerical data for a dense one-component plasma, a
system with long-range forces. We claim that their result
is highly nongeneric. We show in the following that it
does not apply to a gas of hard spheres, neither in the
dilute nor in the dense phase.

Systems of hard spheres have properties similar to real
fluids and solids and provide a reference for successful
perturbation theories [2]. Simulations with this model
were able to uncover fundamental aspects of collective
particle dynamics such as recollisions and the “cage”
effect [2]. Hard-sphere systems are also paradigms for
the chaotic and ergodic properties of many body systems
with short-range interactions, and were shown to have a
positive Kolmogorov-Sinai entropy [3,4].

For dilute gases, Krylov [5] provided an analytical
estimate for the maximum Lyapunov exponent,

l1 � 2�32pK�3mN�1�2s2n log�ps3n�
p
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where K is the kinetic energy, N is the number of
particles, m is the particle mass, n is the number density,
and s is the hard-sphere diameter. This expression has
been verified numerically (apart from a factor �2.8 [4]),
and has been extended to larger densities [6].

The diffusion coefficient for dilute hard-sphere gases is
well approximated by the Enskog expression [7],
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A comparison of Eqs. (1) and (2) reveals that, in the
dilute gas limit, the proposed relation l1 ~ D1�3 of
Barnett et al. cannot be satisfied. Moreover, we combine
in Fig. 1 recent simulation results for D and l1, which
were obtained for a system of 500 hard spheres over
the full range of fluid densities �0.0001 , ns3 , 0.89�.
Reduced units are used for which s, m, and the kinetic
energy per particle K�N are all unity. One observes
that these data are not consistent with the proposed D1�3

dependence (solid line), neither for low densities nor
for large.

We conclude that the conjecture by Barnett et al. does
not apply to many body systems with short-range in-
teractions. But even its applicability for long-range in-
teractions is doubtful. A one-dimensional gravitational
system with finite N exhibits a positive l1 [8], whereas
this clustering and confining system does not show diffu-
sion. We also note that, while the theoretical expression
(26) in Ref. [1] has been obtained for a dilute gas, the
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FIG. 1. Simulation results l1 � l1�D� (crosses) for a gas of
hard spheres. The solid line refers to the expression l1 ~ D1�3

suggested in Ref. [1].

data in Fig. 1 of Ref. [1] are for a dense plasma with a
Coulomb coupling constant G ranging from 1 to 150. As
reported by the same authors [9], for G . 1 the plasma
behaves as a liquid and not as a gas. The dilute gas limit
is recovered only for G ø 1 [9].
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